

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

	0625 PHYSICS
0625/01	Paper 1 (Multiple Choice), maximum mark 40
0625/02	Paper 2 (Core), maximum mark 80
0625/03	Paper 3 (Extended), maximum mark 80
0625/05	Paper 5 (Practical), maximum mark 60
0625/06	Paper 6 (Alternative to Practical), maximum mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

AMAN, Papa Cambridge Com

Grade thresholds taken for Syllabus 0625 (Physics) in the November 2003 examination.

	maximum	mir	nimum mark re	equired for gra	de:
	mark available	А	С	E	F
Component 1	40	-	27	23	19
Component 2	80	1	51	39	29
Component 3	80	54	33	-	-
Component 5	60	49	39	31	24
Component 6	40	31	24	18	13

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/01

PHYSICS

Paper 1 (Multiple Choice)

Syllab 0625 Page 1 Mark Scheme IGCSE EXAMINATIONS – NOVEMBER 2003

.0	Syllab	ne	Mark Scher	
Day	0625	IOVEMBER 2003	E EXAMINATIONS - I	IGCS
W. Patra Cambridge	Key	Question Number	Key	Question Number
	Α	21	D	1
· ·	D	22	С	2
	С	23	Α	3
	В	24	С	4
	Α	25	С	5
	В	26	В	6
	В	27	С	7
	В	28	Α	8
	В	29	С	9
	D	30	D	10
	С	31	D	11
	C			12
		32	В	12
	В	33	D	
	В	34	D	14
	В	35	D	15
	С	36	A	16
	A	37	D	17
	A	38	A	18
	C	39	В	19
	A	40	В	20

TOTAL 40

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/02

PHYSICS

Paper 2 (Core)

Page 1	Mark Scheme	Syllab	. S.	V.
	PHYSICS – NOVEMBER 2003	0625	100	

NOTES ABOUT MARK SCHEME SYMBOLS

B marks

are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks

are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in the candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks

are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they have known it, e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks

are accuracy or answer marks which either depend on an M mark, or allow a C mark to be scored.

c.a.o.

means 'correct answer only'.

e.c.f.

means 'error carried forward'. This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applied to marks annotated 'e.c.f.'.

e.e.o.o.

means 'each error or omission'.

Brackets ()

around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for '10', regardless of the unit given.

Underlining

indicates that this **must** be seen in the answer offered, or something very similar.

Un.pen.

means 'unit penalty'. An otherwise correct answer will have one mark deducted if the unit is wrong or missing. This **only** applies where specifically stated in the mark scheme. Elsewhere, incorrect or missing units are condoned.

OR/or

indicates alternative answers, any one of which is satisfactory for scoring the marks.

		mm
Page 2	Mark Scheme	Syllab
	PHYSICS – NOVEMBER 2003	0625

Q	UEST	<u>ION</u>	<u>SCHEME</u>	TARGET GRADE	B1 M1
1	(a)	(i)	G within block, to left of vertical through midpoint or AB	F	BI TON
	-	(ii)	Vertical line shown through A	С	B1
	(b)		A	F	M1
			more stable (or equivalent statement) e.g. less likely to topple or "weight within base"	F	A1
	(c)		so it does not topple over (or equivalent)	F	<u>B1</u>
					<u>5</u>
2			reference mark on wheel	*"(use stopwa	
			datum line (could be "top" or "bottom")	time" gets of these	only one
			*start timing/stopwatch as mark passes datum line		
			time a number of rotations (accept 1 here)	5C	B5
			time at least 20 rotations	ny 5	
			*stop stopwatch		
			divide time by number of rotations		
			repeat		
			make sure stopwatch at zero		<u>5</u>
3			gravitational OR potential OR PE OR GPE	F	B1
			motion OR KE OR kinetic		
			heat/internal/thermal any order (–1 eeoo)	3F	В3
			sound		
			heat (accept potential)	С	B1
			OR internal/thermal		
			NOT strain potential/NOT chemical potential		
			NOT sound, even as an extra		<u>5</u>
4	(a)		vehicle 2	F	M1
			large(r) area (in contact with ground)	С	A1
			low/less pressure	С	A1
			less likely to sink/get stuck	F	A1
	(b)	(i)	small area	F	C1
			large pressure	F	B1
		(ii)	(weight spread over) large(r) area NOT body area	С	B1
			small/less pressure	С	B1
			reference to weight somewhere in (b)	С	<u>B1</u>
					<u>9</u>
5	(a)	(i)	ray perpendicular to surface at A (by eye)	F	B1
		(ii)	normal at B correct (by eye)	F	B1
		(iii)	ray refracted down at B, but NOT along surface	С	B1
		(iv)	normal at D correct (by eye)	F	B1
		(v)	ray refracted up at D, but NOT along surface	С	B1

Pa	age 3		Mark Scheme	Syllab	0
			S – NOVEMBER 2003	0625	OB.
(b))	converging OR will mee "opposite"	et OR *one up, one down ALLOW *	C *only if diagra	B1
		same deviation (or equi same"	valent) OR "angles of refraction	С	B1
(c))	straight on OR split (depchange (indirection) OR	pending on thickness of "ray") OR no not refracted	F	<u>B1</u> <u>8</u>
6 (a)) (i)	speed		F	 B1
	(ii)	frequency, ALLOW wav	elength	С	В1
	(iii)	wavelength		F	B1
(b))	gamma OR γ OR cosm	nic	С	<u>B1</u>
		condone x-rays as an e	xtra		<u>4</u>
7 (a))	straight line sloping up t		F	B1
		through origin		F	B1
(b)) (i)	voltmeter OR multimete	r on volts range (condone spelling)	F	B1
	(ii)	potential difference OR	p.d. OR volts/voltage (no e.c.f.)	F	B1
	(iii)	ammeter OR multimeter spelling)	r on current/amps range (condone	F	B1
	(iv)	current OR intensity OR e.c.f.) NOT A	amps/amperes OR ampage (no	F	B1
	(v)	evidence of 7.5		F	C1
		evidence of 0.3		F	C1
		7.5/0.3 OR V/I OR volts	current e.c.f. if written down	С	C1
		25 e.c.f. only if V/I used		С	A1
		$\boldsymbol{\Omega}$ or ohm		С	B1
	(vi)	hisR/50		F	C1
		0.5 (Ω/m) e.c.f.		С	<u>A1</u>
					<u>13</u>
3 (a))	EITHER	OR		
		iron filings	(plotting) compass	F	B1
		NOT "put" sprinkle/spread/pour/sc	place near end of magnet atter	F	B1
		tap card	mark end(s) of compass	С	B1
		further detail	further detail	С	B1
(b))	attraction of compass S	pole		
		repulsion of compass N	pole		
		attraction of S pole of a	nother magnet any 1	F	B1
		repulsion of N pole of a	nother magnet		
		attraction of Earth's N p	ole		
		repulsion of Earth's S p	ole J		<u>5</u>

	Pag	je 4			llab. 7.0	Da Cambra
			PHYS	CS – NOVEMBER 2003	0625	30
9	(a)	(i)	decreases		F	dr.
			by 2		С	A On
		(ii)	decreases		F	M1
			by 2		С	A1
		(iii)	decreases		С	B1
	(b)		66 (yrs)		F	C1
			evidence of 3 half-live	es	С	C1
			fraction 1/8 seen or in	mplied	С	C1
			400		С	<u>A1</u>
						<u>9</u>
10	(a)		points plotted correct	ly $\pm \frac{1}{2}$ small square (–1 eeoo) ignore	3F	В3
			0,0 (–1 for very large	L		
	(b)		,	es ACCEPT point circled on graph	F	В1
	(c)			re than before (for same load increase)	C	B1
	(0)			tic/proportional limit in some way	C	ы
	(d)		EITHER	OR		
			measure unloaded le ALLOW "measure sp NOT extension		F	B1
			measure loaded leng extension	th NOT note position of free end, no load	F	B1
			subtract	measure movt. free end,	F	<u>B1</u>
				loaded		<u>8</u>
11	(a)	(i)	100		F	B1
		(ii)	0		F	B1
		(iii)	indication to the left of	of 0°C mark	С	B1
	(b)		expansion of a solid	$\overline{}$		
			expansion of a gas/p	ressure of a gas		
			current/pd/e.m.f. of a	thermocouple		
			conductivity/resistand	ce of a conductor/wire/thermistor any 1	С	B1
			colour of a hot wire			
			melting of a wax			
			NOT expansion of al	cohol ACCEPT density of a liquid		<u>4</u>
12	(a)		$N_1/N_2 = V_1/V_2$ in a	ny form	F	C1
			$8000/N_2 = 240/6$ or c	correct substitution into correct equation	F	C1
				OW B1 for 20 if 800 used instead of 0 (working must be shown)	F	A1
	(b)	(i)	200 e.c.f. i.e. his (a)		F	B1
		(ii)	400 e.c.f. i.e. 2 x his	(a), evaluated	С	<u>B1</u>
						<u>5</u>

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/03

PHYSICS

Paper 3 (Extended)

		Mary Mary
Page 1	Mark Scheme	Syllab
	IGCSE EXAMINATIONS – NOVEMBER 2003	0625
(I) 7(0)		SCAM,

		10	Ph.
1 (a) (i)	7(.0 s)	A1 A1 C1 A1	76
(ii)	PQ or 0 – 2s or other correct description	A1 `	
	distance = av. speed x time or area under graph	C1	
	distance 11 x 2 m= 22 m	A1	4
(b) (i)	deceleration (now) uniform (test 2)	B1	
	slower/lower (average) value/value between that of PQ and QR/takes longer (or values) time to come to rest.	B1	
(ii)	deceleration = change in speed/time or 15/8	C1	
	value = 1.9 m/s^2	A1	4
(c) (i)	graph shows constant acceleration	B1	
	force = ma (and m is also constant) so force is constant	B1	
(ii)	towards the centre of the motion/circle	A 1	3
			[11]
2 (a)	pressure = depth x g x density of water	C1	
	pressure = 50 x 10 x 1000	C 1	
	so value is 500 000 Pa or N/m ²	A 1	3
(b)	force = pressure x area in any form	C1	
	force = 500 000 x 0.15 x 0.07	C1	
	force = 5250 N	A 1	3
			[6]
3 (a)	one slightly nearer the centre than the other	C1	
	20 kg is the nearer one to the pivot	A 1	2
(b)	Clockwise moments = anticlockwise moments (about point/pivot)	A 1	1
	(accept opposite directions and equal)		
(c)	18x2.5=20xB	C1	
	distance = 2.25(m)	A 1	2
			[5]
4 (a)	Some have extra/more energy than others	B1	
	most energetic leave surface/ break liquid bonds etc	В2	M2
(b)	evaporation occurs strictly at the surface/at all temperature	В1	
-	boiling occurs throughout liquid/ at one temperature (at normal at. pr.)/100°C	В1	2
(c)	energy supplied = Wt /60 x 120	C1	
	sp.latent heat = energy/mass evaporated or 60 x 120/3.2	C1	
	value is 2250 J/g	A 1	3
			[7]
5 (a) (i)	nitrogen	M1	
(ii)	copper-solid-molecules very tightly bonded together so separate little	В1	
	water - liquid - molecules less tightly bonded/still small separation	В1	
	Year of the second seco	D4	М3
	nitrogen – gas – molecules "free" and not bonded so separate most	B1	IVIS

		May May 1
Page 2	Mark Scheme	Syllab
_	IGCSE EXAMINATIONS – NOVEMBER 2003	0625
(i) size of mo	voment/change in length of liquid column per degree	SCAM,

41 \ 42		1	m
(b) (i)	size of movement/change in length of liquid column per degree	BA	ol
(ii)	change in length (of liquid column) same for all degrees	B1 B1	[5]
6 (a)	3 more roughly circular	B1	
	all drawn clearly circular, stop (well) clear of barrier and centred on slit	В1	
	wavelength constant throughout, both sides of barrier	В1	3
(b)	wavelength – speed/frequency in any form	C1	
	values substituted correctly	C1	
	answer 6 x 10 m	A 1	3
			[6]
(a)	two dots, marked F, each 5.0 cm from the lens	A2	2
(b)	each correct ray one mark	M2	2
(c)	correct image, labeled I	A 1	1
(d)	rays pass along the axis undeviated/object distance same for all object/rays meet at same distance on image/image distance same for all image	B1	1
(e)	magnifying glass/eyepiece of telescope or microscope	В1	1
			[7]
(a) (i)	0-6 (V) positive and negative	A 1	
(ii)	all waves roughly 6V amplitude	В1	
	3 waves approx. one wave every 0.1 s	В1	3
(b)	any mention of magnetic field	В1	
	coils (forced to) cut magnetic field	В1	
	includes e.m.f./voltage/current in the coils	В1	
	as in Fleming's R.H. rule	В1	М3
(c)	mechanical energy/work (in)/kinetic energy	B1	
	electrical (out) (+ heat) (ignore sound)	B1	2
			[8]
(a) (i)	regular (but)/not normal (sine) wave/several waves added together etc.	B1	
(ii)	1.6(V)	A 1	
(iii)	connect known voltage to Y plates (without any changes to C.R.O.)	B1	
	read off against screen values	В1	4
(b) (i)	6.1 (cm) (accept 6 or any value in range 6.0 to 6.2)	A 1	
(ii)	50 ms for 10 cm or 5 ms per cm e.c.f.	C1	
	so 6.1 x 5 ms or 31 ms	A 1	
(iii)	difference in time of runners finishing race or other timing between two closely	В1	4
	separated events.		[8]

Page 3	Mark Scheme	Syllab	
	IGCSE EXAMINATIONS – NOVEMBER 2003	0625	

10 (a)	current = power/voltage or 150/12			76,
	value is 12.5 A		A1	mb
(b) (i)	sum of currents at junction = current after junction/12.5	5 A = 5.0 A + I	C1	7
	value is 7.5 A		A 1	
(ii)	power = VI or is 7.5 x 12 e.c.f from (i)		C1	
	value is 90 W		A 1	
(iii)	resistance = voltage/current or 12/7.5 e.c.f. from (i) but	t not from (a)	C1	
	value is 1.6Ω		A 1	6
				[8]
11 (a)	top line correct, need 24 and 0		B1	
	bottom line correct, need 12 and -1 (accept eta or e for	electron	B1	2
(b)	particles take curved path (accept from diagram)		B1	
	move between the poles at right angles to lines of force	е	B1	
	move out of paper		B1	3
(c) (i)	use detector to pick up radiation (from isotope at points	s on/in body etc.)	B1	
	high count where circulation good or v.v. explained		B1	
(ii)	alpha particles all absorbed, none detected			
	beta particles may be largely absorbed, not penetrative	e enough		
	gamma rays reach detector/leave body	any two	B2	4
				[9]

TOTAL 80

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0625/05

PHYSICS

Practical

Page 1	Mark Scheme	Syllab	S.	ľ
	IGCSE EXAMINATIONS – November 2003	0625	800	

Pa	ige 1	Mark Scheme	Syllab
		IGCSE EXAMINATIONS – November 2003	0625 PARCAMA 1 1 1
(b)	(c)	Table A, 6 temps, decreasing	dill
	-	Table B, 6 temps, decreasing	
	-	Temp unit	1
	-	Time unit	1
	E	Evidence of temp to better than 1°C	1
	(Consistently better than 1°C	1
(d)	(Graph:	
	-	Time axis suitable (no '3' scales allowed)	1
	-	Time axis labeled	1
	(Check plots at 210 s and 240 s	1
			1
		ines judgement (best fit curves)	1
		ines thickness	1
	[Both lines correctly labeled	1
(e)	(Conclusion:	
	(Correct statement in relation to candidate's lines	1
	E	Explained with correct reference to gradients	
		(if previous mark scored)	1
			TOTAL 15
(b))	x = 20.0 (cm)	1
(c))	y value less than 25 cm	1
)	y value to nearest mm	1
(d)	(d = 25 (cm) (allow e.c.f.)	1
(e)	t	value correct arith	1
(f))	x = 30 (cm)	1
)	y value in range 30.0 – 37.5 (cm)	1
	(d = 37.5 (cm) (allow e.c.f.)	1
	á	all x, y, d consistently in mm, cm or m (unit stated at least once)	1
)	x, y d units stated every time	1
	t	value correct arith	1
	t	values within 0.5 cm of each other	1
(g)	á	average t; correct method	1
		final answer to 2/3 sf	1
	ı	indi dilower to 2/0 or	•

Page 2	Mark Scheme	Syllab
	IGCSE EXAMINATIONS – November 2003	0625

Pa	ge 2	Mark Scheme	Syllab
		IGCSE EXAMINATIONS – November 2003	0625
	Trac	e	Syllab 0625 1 1 1 1
	Neat	thin lines	
	Lines	s complete	1
	A an	d B correct positions	1
	New	B correct	1
	i = r	(by eye)	1
	CD a	it least 5 cm	1
	Seco	and CD at least 5 cm	1
	Strai	ght lines extended to X	1
	XA d	rawn and Y labeled	1
(j)	AY c	orrect to 2 mm	1
	YX c	orrect to 2 mm	1
	AY a	nd YX same to within 10 mm	1
(k)	Thick	kness of mirror OR thickness of pins OR thickness of lines	1
(I)	Prec	aution (pin separation, view bases, vertical pins)	1
	Reas	son	1
			TOTAL 15
. (b)-	–(g) x in r	m, cm or mm	1
	V in '	V	1
	k in \	//m, V/cm or V/mm	1
	corre	ect x values (0.200, 0.400, 0.800 m)	1
	all x	to nearest mm	1
	x cor	nsistent sf	1
	evide	ence of V to better than 0.5 V	1
	all V	to better than 0.5 V	1
	3 k v	alues	1
	Chec	ck second k value, correct	1
	all k	to 2 sf OR all k to 3 sf	1
	all k	same to within 10%	1
(h)	(volta	age increases with length)	1
		voltage proportional to length	2
		onstant OR figures correctly quoted	1
			TOTAL 15
			TOTAL 13

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/06

PHYSICS

Alternative to Practical

Page 1	Mark Scheme	Syllab
	IGCSE EXAMINATIONS – NOVEMBER 2003	0625

	IGCSE EXAMINATIONS – NOVEMBER 2003 06	25
(a)	wind string round more than once	25 DaCambridge
	divide measured length by number of turns to find c	Orio
(b) (i)	correct diagram, blocks parallel, one at each end	1
(ii)	119 mm OR 11.9 cm to 121 mm OR 12.1 cm	1
(c)	V = 32.39 to 32.41 cm ³	1 1
(d)(i)	$V_{\rm m} = 0.5 - 2 {\rm cm}^3$	1
(ii)	correct calculation and 2/3 sf (ignore unit)	1
		TOTAL 8
(a) (i)(ii)	2 neat continuous rays (thickness up to as EF)	1
(iii)	normal where incident ray meets mirror (90° by eye)	1
(iv)	i = $20^{\circ} \pm 1^{\circ}$ (allow e.c.f. if mark for normal not scored)	1
(b) (i)(ii)	lines complete and neat with AX correctly intersecting	1
(iii)	AY = 5.9 - 6.1 cm AND $YX = 5.5 + 0.3 cm$	1
(c)	any one from:	
	thickness of mirror	
	thickness of lines	
	thickness of pins	
	judgement of where lines cross	1
		TOTAL 6
(a)	pointer at 0.35 A	1
(b) (i)	variable resistor/rheostat/potentiometer	1
(ii)	V	1
	A	1
	Ω	1
	One R correct	1
	All R correct (6.129, 5.769, 4, correctly round	led) 1
	Consistent sf for R (either all 2 sf or all 3 sf)	1
(iii)	variable resistor/number of cells	1
(c)	Voltmeter in parallel with resistors (or power source)	1
	Ammeter next to X	1
	Symbols correct and all connections drawn in	1
		TOTAL 12

		my
Page 2	Mark Scheme	Syllab
	IGCSE EXAMINATIONS – NOVEMBER 2003	0625

		IGCSE EXAMINATIONS - NOVE	VIDER 2003	0025	10- N	
4 (a)	Sc	cales: y-axis 1N = 4 cm; x-axis 1m/s2 = 4/5	5 cm right way round	d	Call	ridge.com
	Вс	oth axes labelled with quantity and unit			10	Tim
	Ple	ots to ½ sq (-1 each error or omission, mir	nimum mark zero)		2	50
	Lir	ne thickness less than 1 mm and no 'blob'	plots		1	COM
	W	ell judged best fit single straight line			1	1
(b)	La	arge triangle used (> ½ line) clear on graph	1		1	
	Int	terpolation to ½ sq (if larg	e enough triangle pr	esent)	1	
	Va	alue 1.38 – 1.48			1	
	kg	and 2/3 sf			1	
					TOTAL 10	
(a)	Tv	vo from:				
	sa	me volume of water				
	sa	me starting temperature of water				
	sa	me size/shape/type beakers				
	sa	me thickness/mass/volume of insulator				
	sa	me room temp			2	
(b)	64	P°C (with unit)			1	
(c)	В				1	
					TOTAL 4	